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Abstract

The transport of high energy heavy (HZE) ions through bulk ma-

terials is studied with energy dependence of the nuclear cross sections

being neglected. A three-term perturbation expansion appears to be ad-

equate for most practical applications for which penetration depths are

less than 30 g/cm 2 of material. The differential energy flux is found for

monoenergetic beams and for realistic ion beam spectral distributions.

An approximate formalism is given to estimate higher order terms.
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1. Introduction

Although heavy ion transport codes for use in space applications are in a relatively advanced
stage at Langley Research Center (refs. 1 through 3), it seems prudent to further develop the
theory for comparison with laboratory experiments, which has been recently neglected since
initial efforts began several years ago (refs. 4 through 7). In the present report, we begin with
the most simplified assumptions for which the problem may be solved completely. Solutions to
a more complete theory may then be compared with prior results as limiting cases. In this way,
the more complete but approximate analysis will have some basis for evaluating the accuracy
of the solution method. The lowest order approximation will be totally energy-independent.
The most complicated solution to be considered herein will have energy-independent nuclear

cross sections but will treat the energy-dependent atomic/molecular processes and the energy
spread of the primary beam. A fully energy-dependent theory must await further development,
although some terms have been previously evaluated (ref. 6).

2. Energy-Independent Flux

If the ion beam is of sufficiently high energy that the energy shift due to atomic/molecular
collisions brings none of the particles to rest in the region of interest, then

[o ]+ Cj(x) = mjk k Ck(x) (2.1)
k

where Cj(x) is the flux of type j ions, aj is the nuclear absorption cross section, and rnjk is
the fragmentation parameter for producing type j ions from type k. The solution for a given
incident ion type J is given in terms of a set of g-functions as follows:

g(Jl) = exp(-crjlx) (2.2)

g(Jl,J2,... ,Jn,Jn+l) = g(Jl,J2,.. . ,Jn-l,Jn) - g(Jl,J2,... ,Jn-l,Jn+l) (2.3)
O'jn+ l -- O'jn

for which the solution for the type j ion flux is written as

¢_°)(x) = 6jj g(j) (2.4)

exp(-6jx) - exp(-6jx)
¢_l)(x) = my jag g(j, J) : rnjjaj

o'j - aj
(2.5)

@ 2)(x) = Z mJ kak mkjaJ g(j,k,J) (2.6)
k

¢_3)(x) = _ mjkak mklalmljaj g(j,k,l,J) (2.7)
k,I

with

(2.8)

This solution is equivalent to that derived by Ganapol et al. in reference 8. We now consider
some applications of the above formalism. The cross-section data base is discussed elsewhere
(ref. 9).

2.1. Neon Beam Transport

We first note in the case of 2ONe incident on water that 19Ne and 19F have only one

contributing term in equation (2.8). These are shown in figure 2.1: Also shown in figure 2.1



arethefluxesof variousisotopesof secondaryion fragments.Theeffectof successivetermsof
equation(2.8)isshownin table2.1for the 150flux. It is clear from the table that the fourth
and higher order collision terms are completely negligible and that third collision terms are a

rather minor contribution. Hence, a three-term expansion as we have used in the past _refs. 5,
6, and 7) appears justified. The relative magnitude of the terms contributing to the "Li flux
generated by the 2UNe beam is presented in table 2.2. The fourth collision term is negligible at
small penetration distances and small, but not negligible, at distances greater than 30 cm. The
greater penetrating power of the lighter mass fragments is demonstrated in figure 2.2. Also
note the difference in solution character due to the importance of the higher order term.

2.2. Iron Beam Transport

We first note in the case of 56Fe incident on water that 55Fe and 55Mn have only one
contributing term in equation (2.8). The 54Mn has but two terms, and the slight difference in
solution character can be seen in figure 2.3. Results for 52V are also shown. The convergence

rate of equation (2.8) is demonstrated in-table 2.3. Again we see the fourth collision term to be
negligible, whereas the three-term expansion we have used before seems quite accurate at these
depths for these ions. In distinction to prior results, the 160 flux has significant contributions
from higher order terms for depths beyond 20 cm as seen in table 2.4. Clearly, a more complete
theory using higher order terms is required than previously used for ion beams of particles
heavier than 2°Ne. The different solution character of the lighter mass fragments is clearly
demonstrated in figure 2.4.

Table 2.1. Normalized Contributions to i50 Flux From Successive

Collision Terms for 20Ne Transport in Water

150 flux at x o_

Fragment

term 10 cm 20 cm 30 cm 40 cm 50 cm

¢(I) 1.00E0 1.00E0 1.00E0 1.00E0 1.00E0

¢(2) 1.01 E- 1 2.01E- 1 3.02E- 1 4.03E- 1 5.04E- 1

¢(3) 2.63E-3 1.05E-2 2.36E-2 4.18E-2 6.52E-2

¢(4) 3.31E-5 2.52E-4 8.58E-4 2.03E-3 3.95E-3

Table 2.2. Normalized Contributions to 7Li Flux From Successive

Collision Terms for 20Ne Transport in Water

7Li flux at x o_

Fragment

term 10 cm 20 cm 30 cm 40 cm 50 cm

¢(1) 1.00E0 1.00E0 1.00E0 1.00E0 1.00E0

¢(2) 1.62E-1 3.20E-1 4.72F_,-1 6.18E-1 7.58E-1

¢(3) 1.15E-2 4.53E-2 9.98E-2 1.73E-I 2.63E-I

¢(4) 4.02E-4 3.16E-3 1.04E-2 2.39E-2 4.53E-2
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Table 2.3. Normalized Contributions to 52V Flux From Successive

Collision Terms for 56Fe Transport in Water

Fragment

term

¢(1)

¢(2)

_(3)

4,(4)

10 cm

1.00E0

7.91E-2

2.37E-3

2.24E-5

52V flux at x o_

20 cm

1.00E0

1.52E-1

9.48E-3

1.73E-4

30 cm

1.00E0

2.37E-I

2.13E-2

5.93E-4

40 cm

1.00E0

3.15E-i

3.79E-2

1.41E-3

50 cm

1.00E0

3.94E-1

5.91E-2

2.75E-3

Table 2.4. Normalized Contributions to 160 Flux From Successive

Collision Terms for 56Fe Transport in Water

Fragment

term

¢(1)

¢(2)

¢(3)

160 flux at x of -

10 cm 20 cm 30 cm 40 cm 50 cm

1.00E0 1.00E0 1.00E0 1.00E0 1.00E0

5.87E-1 1.12E0 1.59E0 2.00E0 2.36E0

1.86E- 1 7.08E- 1 1.49E0 2.46E0 3.56E0

3.06E-2 2.63E- 1 9.44E- 1 2.33E0 4.72E0
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Figure 2.1. ion fragment flux of various isotopes as a function of depth in water for a 2°Ne

incident beam.
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Figure 2.2. Flux of light ion fragments as a function of depth in water for a 2°Ne incident
beam.
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Figure 2.3. Ion fragment flux of various isotopes as a function of depth in water for a 56Fe
incident beam.
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Figure 2.4. Flux of light ion fragments as a function of depth in water for a 56Fe incident beam.

3. Monoenergetic Ion Beams

In moving through extended matter, heavy ions lose energy through interaction with atomic

electrons along their trajectories. On occasion, they interact violently with nuclei of the matter

and produce ion fragments moving in the forward direction and low energy fragments of the

struck target nucleus. The transport equations for the short range target fragments can be
solved in closed form in terms of collision density (refs. 5 and 6). Hence, the projectile

fragment transport is the interesting unsolved problem. In previous work, the projectile ion
fragments were treated as if all went straightforward (ref. 4). We continue with this assumption

herein, noting that an extension of the beam fragmentation model to three dimensions is being

developed (ref. 9).

With the straightahead approximation and the target secondary fragments neglected (refs. 4,

5, and 6), the transport equation may be written as

k>j

(3.1)

where Cj(x, E) is the flux of ions of type j with atomic mass Aj at x moving along the x-axis at

energy E in units of MeV/amu, aj is the corresponding macroscopic nuclear absorption cross

section, Sj(E) is the change in E per unit distance, and mjk is the fragmentation parameter
for ion j produced in collision by ion k. The range of the ion is given as

Rj (E) = I']_E
dE I

Jo
(3.2)

The stopping powers used herein are based on Ziegler's fits to a large data base (refs. 11

through 16). There is some controversy as to the stopping powers to be used (ref. 10). The

analysis in reference 10 was biased to the stopping power used in the data analysis and is the
same as that used in the PROPAGATE code. The values in the HZESEC computer code are

similar to those in PROPAGATE. Neither the PROPAGATE nor HZESEC stopping powers
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have been compared with the data base collected by Ziegler as far as is known to us. We
continue to use Ziegler's work until more definitive comparisons compel us to do otherwise.

The solution to equation (3.1) is to be found subject to boundary specification at x = 0 and
arbitrary E as

Cj(0, E) = Fj(E) (3.3)

Usually Fj(E) is called the incident beam spectrum.
It follows from Bethe's theory that

Sj(E) = ApZ2 Sp(E) (3.4)

for which

Z2 Rj(E)= Z2p (3.5)

The subscript p refers to proton. Equation (3.5) is quite accurate at high energy and only
approximately true at low energy because of electron capture by the ion which effectively
reduces its charge, higher order Born corrections to Bethe's theory, and nuclear stopping at the

lowest energies. Herein, the parameter vj is defined as

= (3.6)

so that

vj Rj(E) vk Rk(E) (3.7)

Equations (3.6) and (3.7) are used in the subsequent development, and the energy variation in

vj is neglected. The inverse function of Rj (E) is defined as

E = Ry 1 [Rj(E)] (3.8)

and plays a fundamental role subsequently. For the purpose of solving equation (3.1), define
the coordinate transformation (refs. 5 and 6),

yj =- x - Rj(E)

Jx + R (E)
(3.9)

and new functions

where

for which equation (3.1) becomes

Xj(yj,_j) = Sj(E) Cj(x,E)

J

(2°) k m 3k_k Vk

(3.10)

(3.11)

(3.12)

6
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where the crj is assumed to be energy independent.
integration with the integrating factor,

results in

where

Solving equation (3.12) by using line

1 r/j)] (3.13)#j(r/j,_j) = exp[_rj(_j +

1
X.j(r/j,_j) = exp[-_aj(_j + r/j)] Xj(-_j,_j)

+ 2 j__ exp _°i(r/- r/J) _ m_k_k_ Xk(nk,_k) dr/'
k

(3.14)

7

.k - u3 )
, uk + uj r/, + _J

r/k= 2_ _ [ (3.15)r vk-vjr/r . vk+vj

and the boundary condition (eq. (3.3)) is written as

Consider a Neumann series for equation (3.14) for which the first term is

x_O)(r/j,_j) =exp[-laj(r/j + _j)] Sj[RSI(_j) ] Fj[Rfl(_j)] (3.16)

and the second term is

x_l)(r/j,,j) =1 frlj exp [laj(r/,- r/j)] _ mjkak_exp[ -x_ak(r/k' --'k)]'
2 J_(j k

An expression for X!.2)(r/j, (j) is derived once equation (3.17) is reduced and higher order terms

can be found by continued iteration of equation (3.14). These expressions (eqs. (3.16) and
(3.17)) are now simplified for a monoenergetic beam of type M ions.

The boundary condition is now taken as

Fj(E) = _jM 6(E-Eo) (3.18)

where 6jM is the Kronecker delta, 6( ) is the Dirac delta, and Eo is the incident beam energy.
Thus,

for which X_.O)becomes

1
X_°)(r/j,_j) = 6jMexp[-_aj(r/j + _j)] 6[_j-Rj(Eo)] (3.20)



and X_ I) becomes

lnj vj [1 1 I ]x_l)(llj,_j) = _ f-¢j mjM°'M-_M exp _o'j77j -- -_O'M(_]M + _tM)

× 6[_M--RM(Eo)] dr� (3.21)

where _/ is given by equation (3.15) for k = M. The contribution to the integral (eq. (3.21))
occurs at

v M +uj
tit = VM21/M-uj RM(E°) - v M - vj"_j (3.22)

provided that ,1' lies on the interval -_j < r/< r/j so that

mjMaMVj [1 1 ]x_l)(rtJ _J)= I_M ---_jl exp, _5_M( G +_,)_ _(_j 1) (3.23)

The simplified form in equation (3.23) may now be used to calculate the next iteration of

equation (3.14):

x_?)(_;, G) = _ r i .1 Vj 0j exp[ -_°'M(_k + _)2 Z mjk_krnkM°'M lvM = Vk I _j
k

i . 11 1 ] dr/"-- "_O'k( rlk --_) -- -_O'j ( rlj --T/') (3.24)

where

and

vk - vj
?. v k + vj _,,+ _J

k = 2v k "2vk I/t Vk -- Vj _/1 Vk + uj

2v M

VM -- v k

with the requirement that -_ < _ < r/nk"
obtain from equation (3.20)

(3.25)

VM + Ilk _u (3.26)
RM(Eo) VM _ Vk k

The inverse of the transformation is now applied to

¢_°)(x, E) = 1 exp(-ajx) _jM _5[x+Rj(E)-RM(Eo)]
Sj(E)

(3.27)

and from equation (3.23)

1 vj exp(__aj[x_Rj(E)_ ,l=  mjM ,, 1,.. -

1 Ix + R3(E) + ,{] ! (3.28)--_(TM

so long as

VM [RM(Eo) - z] < Rj(E) < YM RM(Eo) -- x (3.29)
vj l]j

Otherwise cJl)(x, E) is zero. After a complicated but straightforward manipulation, a similar

result may be obtained from equation (3.24) for ¢_2)(x, E).

11 li



In reducing equation (3.24), it is useful to define

1

XM = _ (_ + 7) (3.30)

and make a change in variables as

1

x k = _ (_/_ - _) (3.31)

1 - T/")
Xj = _ (_lj (3.32)

1 t
]Xju exp(--°'MXM _ trkXk _ o'jxj) dxj

k
(3.33)

where the integral is understood to be nonzero only in the physically allowed regions as

explained presently. One may easily demonstrate

X M -4-x k 4- Xj = X (3.34)

VMX M "4-VkX k "4- ujxj = uM RM(Eo) - u k Rk(E )

for which the parametric solution is given as

(3.35)

vM RM(Eo ) - Vk[Rk(E ) "4-x] -4-(v k -- vj)xj
(3.36)XM

vM -- tJk

VM[RM(E ) + x] -- tJM RM(Eo ) - (v M - lyj)xj
(3.37)Xk

vM -/2 k

The requirement that x M and Xk be bounded by the interval 0 to x - xj yields

{ 0 } { x }vk [Rk(E ) + x] - v M RM(Eo ) _ xj <_ v M [RM(E ) -4-x] - uM RM(Eo )

_k -- Vj b'M -- l/j

(3.38)

as the appropriate limits for the integral in equation (3.33) when//M > vk > vj. In the braces
in equation (3.38), we always choose the most restrictive value for the limit. The requirement

of equation (3.38) also implies the result that

RMI [RM(Eo) -x] < E <_ R-_I[ uM RM(E°)-vjx] (3.39)
Vk

as the range over which the result of equation (3.33) is not zero. In the event that uk > v M > vj,
then

/ 0 } { x /vM [RM(E ) -4-x] - t_M RM(Eo ) < xj < vk [Rk(E ) 4- x] - v M RM(Eo )

l/M -- IZj Vk -- Vj

(3.40)

As a result of equation (3.40)

(3.41)

9



In theeventthat vM > vj > P'k, it follows that

x

v M [RM(E) + x - RM(Eo)]

VM -- vj

VMRM(Eo) -- v k Rk(E) - vkx

pj - vk

(3.42)

where the lesser of the three values in the braces is used as the upper limit of xj for which the

integral of equation (3.24) is not zero. As a result of equation (3.42)

]RM I [RM(Eo) - x] < E _ Rk 1 "_k RM(E°) - x
(3.43)

The integral in equation (3.33) may now be evaluated as

aJkak_Mff_ j [exp(--aMXM l -- ffkXkl -- ajXjl )=E "kI:'jk ,
k

- exp(--aMXMu -- akXku -- ajXju)] (3.44)

where XMu, Xku, XMl, and xkl are the values of equations (3.36) and (3.37) evaluated at the

corresponding upper and lower limits of xj and

[ (vk --vJ).aM (VM--VJ)- ] (3.45)
Ajk M = O'j + L(VM - vk) (t'M Vk)('kJ

Higher order terms are similarly derived.
The total integral flux associated with each term may be evaluated as

ffP_I)(x) = _o°° ¢_l)(x,S)dE (3.46)

One may easily show that

f0 °e ¢_I)(x, E)
dE = °'JM [exp(-ffjx)- exp(--O'MX)] (3.47)

o"M - aj

in agreement with equation (2.5). Furthermore

,_2)(x,E) dE= E Iv M- vk]A-----jkM _kk _ [exp(-(Tjx)--exp(--akX)]
k

( VM -- VJ ) [exp(--o-jx) -- exp(--O-MX)] }-_M_ a j (3.48)

which agrees with equation (2.6) as vk --* VM. This relation of equation (3.48) and

equation (2.6) has been used previously (ref. 7).

3.1. Total Flux Comparisons

The results of equations (3.28) and (3.44) are integrated numerically over their entire energy

spectrum and given along with values from corresponding energy-independent solutions in

10



table 3.1. The primary beam was taken as 2°Ne at 1380 MeV/amu. Clearly, the energy-
dependent solutions appear quite accurate.

3.2. Monoenergetic Beam Results

The fluorine spectral flux seen at various depths in a water column is shown in figure 3.1.
The primary beam was 2°Ne ions at 600 MeV/amu corresponding to a range of 30 cm. There
is a clear structure due to the fluorine isotopes shown in the spectrum. The most energetic ions
are 19F. The lSF and 17F spectral components are clearly resolved. Only the 19F is able to

penetrate to the largest depth represented (35 cm). A similar, but more complicated, isotopic
structure is seen in the oxygen spectra of figure 3.2. The greater number of oxygen isotopes
contributing has a smoothing effect on the resultant spectrum. This effect is even more clearly
seen in figure 3.3 for the nitrogen isotopes. Some of the smoothness results from the higher

order term ¢(2) in the perturbation expansion. The boron flux of figure 3.4 shows very little
isotopic structure. Qualitatively, similar results are obtained for an iron beam of the same

range (30 cm) as shown in figures 3.5 to 3.9.

Table 3.1. Total Flux From Energy-Independent Solution and Numerically Integrated Differential Spectrum

[Values in parentheses are from energy-independent solution]

Fragment

18 F ¢(1)

q_(2)
170 ¢(1)

16 0 0(1)

_(2)
15 N ¢(1)

_(2)
13C ¢({)

¢(2)
+-2C ¢(U

II B ¢(1)

Flux, cm -2, at water depth x of--

Term 5 cm 20 cm

0.00727 (0.00717)

0.00018 (0.00018)

0.00729 (0.00729)

0.00017 (0.00017)

0.01350 (0.01349)

0.00029 (0.00029)

0.00470 (0o0481)
0.00032 (0.00033)

0.00511 (0.00521)
0.00032 (0.00033)

0.00668 (0.00682)

0.00056 (o.ooo86)
0.00417 (0.00417)

o.ooo36 (o.ooo36)

0.01148

0.00114

0.01173

0.00112

0.02193

0.00191

0.00796

0.00220

0.00894

0.00224

0.01173

0.00398

0.00735

0.00259

(0.0114O)

(0.00114)

(0.01174)

(O.QQ112___

(0.02202)
(o.omgoJ_
(0.00796)

(0.00220)
(0.00887)
(0.00224)

(0.01178)

(0.00398)

(0.00732)

(0.00259)
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Figure 3.1. Fluorine flux spectrum produced by a 2°Ne beam at 600 MeV/amu in a water

column at various depths.
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E

cq
'E
eD

m

¢-

o
O

fD

5 x_10 -3

B

x, cm

25 15 5

0 1O0 200 300 400 500 600 700
E, MeV/amu

Figure 3.4. Boron flux spectrum produced by a 20Ne beam at 600 MeV/amu in a water column
at various depths.

13



8.0

E 6.4

i
>
¢1

N 4.8
'E
0

ff

= 3.2
m

g 1.6

_10 -3

15

x, cm
5

m

25
/

I _J_l I,, I , I I I

200 400 600 800 1000 1200 1400
E, MeV/amu

Figure 3.5. Manganese flux spectrum produced by a 56Fe beam at 1090 MeV/amu in a water
column at various depths.

8.0

6.4

T--

>

_, 4.8

E
0

3.2
E
="1

E
£
" 1.6
0

_10 -3

x, cm
5

15

J'-'& _ I
400 600 800

E, MeV/amu

I 1 I
0 200 1000 1200 1400
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4. Realistic Ion Beams

In the previous section, we assumed that a monoenergetic beam was present at the boundary.
We now take the incident ion beam flux to be

i

Cj(0,E) = _ exp 2A2 j (4.1)

where Eo is the nominal beam energy and A is related to the half-width at half-maximum.

The full solution is then found as a superposition of results from the previous section. The
uncollided flux is found to be

¢(A0/)(x, E ) = SM(Em) exp(_aMx ) 1 [(Eo- Era) 2 ]
_M(E ) _-_exp[ 5-_ J (4.2)

where RM(Em) = RM(E ) + x. One similarly arrives at

1 Ix= ~ °'jMVj exp -_aj [x - Rj(E) - _o] - _aM
¢_l)(x'E) Sj(E) IvM - .jl

x-_l[erf(Eu-_2_°)-erffEI-E°_]\ _¢'_A ]]

/

+ Rj(E) + _;]

(4.3)

where

711o= 21,,M vM _ vj [Rj(E) +x] (4.6)
VM -- Yj RM(E°) YM vj

(4.4)

(4.5)
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The second collision contribution to the ion energy spectrum is similar:

O'jk...-.-_kMvj [exp((rMXM l -- O'kXkl -- 17jXjl )_2_(x,_) : E__(_) f_,=_ _,_M

-- exp(--_r MX Mu -- O'kXku -- o'jXju) ]

1 [erf (Eu - Eo_ (El - EoZlx _ _, Tc_A )-erf\ _¢_- ]]

where

E l = ,-,.-.]

--,-x)]

(VM > Vk > Pj)

(v k > VM > vj)

(PM > Vj > Vk)

(4.7)

(4.8)

E_= Rk, [._(R_(E)+x) (_k> I'M> I'j)
[ I'M

RM 1 [RM(E ) + x] (I'M > I'j > I'k)

(4.9)

and x M and x k evaluated at the upper and lower limit values of xj are obtained from
equations (3.31) and (3.32).

The elemental flux spectra were recalculated for 2°Ne ions at 600 MeV/amu with a
0.2-percent energy spread assumed for the primary beam. The resulting fluorine flux is shown
in figure 4.1. Although the spectral results are quite similar to the monoenergetic beam case,
there is a considerable smoothing of the total spectrum. Similar results are obtained for the

oxygen flux as well in figure 4.2. In distinction, the nitrogen and carbon spectra show only
slight isotopic structure as seen in figures 4.3 and 4.4. Qualitatively similar results are obtained
for the 56Fe realistic beam as shown in figures 4.5 through 4.9.
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Figure 4.1. Fluorine flux spectrum produced by a 2°Ne beam at 600 MeV/amu with a

0.2-percent energy spread in a water column at various depths.
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5. Approximate Spectral Solutions

In the previous sections, the spectral solutions of the secondary ion flux were derived

to second-order collision terms. Such a three-term expansion is not always an adequate

representation of the transport solution. In this section, we derive approximate expressions
for the perturbation series. Clearly, the more accurate results would be used to the order

to which they are known, and the higher order terms would be taken to the approximate

expressions of this section.

5.1. Approximate Monoenergetic Beams

The uncollided beam solution is taken as

¢_0)(x, E) (0) 1
=¢j (x)_j(E-----_6[x + Rj(E)-Rj(Eo)]

(5.1)

which is equal to the result in equation (3.27). The first-order collision term is approximated

by noting that the energy dependence of the exponent of equation (3.28) is slowly varying in

energy (refs. 4 through 7) resulting in

• ¢_)(x) (5.2)
¢_1)(x,E) _, Eju - Ejt

where

(5.3)

(5.4)
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Similarly,

where

and

= _ ajkakMg._(j.k,M)

Rk 1{RM(Eo)- z}

EJl= l nkl {_k nM(Eo)-X )

( RM1{RM(Eo)- x}

R-kl ( uM RM(E°) - vjx }Uk

Eju = R_ { RM(E°) - vJX }UM

Rk-1 (_kM RM(Eo)-X}

Higher order terms (n > 2) are taken as

(V M > Vk > Vj) /

(Pk > PM > Pj)

(_M > _j > "k)

(V M > V k > V j) [

I

(Vk > tiM > PJ) I

I
(.M > "5> "k)J

(5.5)

(5.6)

(5.7)

(5.8)

where Eju and Ejl are given by equations (5.6) and (5.7). In all the expressions for ¢(.n) given
T 3

by equations (5.2), (5.5), and (5.8), the flux values are taken as zero unless

Ejl < E < EjU (5.9)

The approximate monoenergetic beam solutions are given in figures 5.1 through 5.4 and should
be compared with the solutions found in section 3. The 170 flux at 20 cm of water is shown

in figure 5.1 as contributed by the first collision term. The trapezoidal (solid) curve is the
exact solution for the first collision term derived in section 3. The rectangular (dashed) curve
is the approximate first collision term of equation (5.2). Terms for other fragment spectra are
similar to those shown in figure 5.1. The solution for the second collision contribution to the

170 flux at 20 cm of water is shown in figure 5.2. The nearly rectangular solution (dashed
curve) is the approximation given by equation (5.5). A triangular spectral function of the

same energy interval could yield improved results. The spectra of fragments which are much
lighter than the primary beam are more accurately represented by the approximate solutions
as seen in figures 5.3 and 5.4. This improvement results from the greater number of terms in
the summation of equation (3.44). This leads us to believe that the higher order terms in the

perturbation series can be adequately represented by the approximation in equation (5.8). This
is especially true because higher order terms in many applications are only small corrections.

5.2. Approximate Realistic Beams

Approximate solutions for realistic ion beams may be found by using a super-
position of the approximate monoenergetic beam solutions. The incident ion beam is taken as

Cj(0, E) - 1 [ (E=Eo) 2]V/-_-_Aexp 2A2 j 5jM (5.10)
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whereEo is the nominal beam energy, and A is related to the half-width at half-maximum.
The first term is then as before

¢(M00)(x, E) SM(Em) 1 [= exp(--O'MX)_ exp (5.11)SM(E)
(Eo - Em) 2 ]

where RM(Em ) = RM(E ) + x. One similarly arrives at

¢_l)(x, E)---¢_l)(x)_ [erf (E_f_ °) -erf(E_2E°)] (Eju-Ejl) -1 (5.12)

where

Eu=R_ { t'j--_M[Rj(E) + x]} (5.13)

Et = RMI + z]} (5.14)

and Eju and Ejt are given by equations (5.3) and (5.4). Additional computation yields

@ 2)(x'E) = Z aJkakM g(j,k,M){erf[(Eu- Eo)/V"2A- erf(El- Eo)/V_A]}
k 2(E u - Ej,)

(5.15)

where Eju and Ejt are given by equations (5.6) and (5.7), and E t and Eu are given in
equations (4.8) and (4.9). The remaining higher order terms are taken as

¢_ n)(x'E): Z ajj,,_, ..... trjl,M g(J, Jn-1 ..... jl'M) erf[(Eu-E°)/v_A]-erf[(E1-E°)/v/2A] (5.16)
2(Ej,, - E_t)

Jl ,..,,in- l

where Ejl and Eju are given by equations (5.2) and (5.3) and Eu and E l are given by
equations (5.13) and (5.14).

These approximate equations for realistic ion beams are given in figures 5.5 to 5.8 and should
be compared with the more exact formulae given in section 4. The primary ion beam is taken
as 20Ne at 600 MeV/amu with a 0.2-percent energy spread. The 170 flux first collision term is
shown in figure 5.5 for the two formalisms. The effect of the beam energy spread is seen as a
rounding of the spectrum at the edges compared with the monoenergetic case in figure 5.1. The
second collision term is shown in figure 5.6. The approximate second collision term improves for
the lighter fragments as seen in figures 5.7 and 5.8. Higher order collision terms are expected
to be more accurate because of the large number of combinations of contributing ion terms.
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6. Recommended Methods

An energy-independent theory has been used to show that the perturbation expansion up to
the double collision term is adequate for all fragments whose mass is near that of the projectile.
This is why the three-term expansion was able to explain the Bragg curve data for 2°Ne beams in
water with reasonable accuracy (ref. 7). As a starting point for the calculation of the transition
of heavy ion beams in materials, the use of the three-term expansion of sections 3 and 4 can
be further corrected by use of the approximate higher order terms given in section 5. As an
example of such a procedure, we give results for ZONe beams at 600 MeV/amu in water. The
results are shown in figures 6.1 to 6.6 as successive partial sums of the perturbation series. The
solid line is the first collision term. The dashed curve includes the double collision terms. The

long-dash-short-dash curve includes the triple collision term and can hardly be distinguished
from the long-dash-double-short-dash curve which includes the quadruple collision terms. The
results for penetration to 20 cm of water are shown in figures 6.1 to 6.6. The monoenergetic
beam results for 170, 160, and 12C are given in figures 6.1 to 6.3, respectively. The double
collision term is seen to be always an important contribution. The triple collision term shows
some importance for 12C, while higher order terms are negligible. Similar results are shown in

figures 6.4 to 6.6 for an energy spread of 0.2 percent.

NASA Langley Research Center
Hampton, VA 23665-5225
May 11, 1989
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